Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7344, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957166

RESUMO

For successful infection of host cells and virion production, enveloped viruses, including Zika virus (ZIKV), extensively rely on cellular lipids. However, how virus protein-lipid interactions contribute to the viral life cycle remains unclear. Here, we employ a chemo-proteomics approach with a bifunctional cholesterol probe and show that cholesterol is closely associated with the ZIKV structural protein prM. Bioinformatic analyses, reverse genetics alongside with photoaffinity labeling assays, and atomistic molecular dynamics simulations identified two functional cholesterol binding motifs within the prM transmembrane domain. Loss of prM-cholesterol association has a bipartite effect reducing ZIKV entry and leading to assembly defects. We propose a model in which membrane-resident M facilitates cholesterol-supported lipid exchange during endosomal entry and, together with cholesterol, creates a platform promoting virion assembly. In summary, we identify a bifunctional role of prM in the ZIKV life cycle by mediating viral entry and virus assembly in a cholesterol-dependent manner.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Internalização do Vírus , Replicação Viral , Proteínas Virais/metabolismo , Lipídeos
2.
J Virol ; 97(11): e0087823, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37905840

RESUMO

IMPORTANCE: Remodeling of the cellular endomembrane system by viruses allows for efficient and coordinated replication of the viral genome in distinct subcellular compartments termed replication organelles. As a critical step in the viral life cycle, replication organelle formation is an attractive target for therapeutic intervention, but factors central to this process are only partially understood. In this study, we corroborate that two viral proteins, nsp3 and nsp4, are the major drivers of membrane remodeling in SARS-CoV-2 infection. We further report a number of host cell factors interacting with these viral proteins and supporting the viral replication cycle, some of them by contributing to the formation of the SARS-CoV-2 replication organelle.


Assuntos
COVID-19 , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Organelas/metabolismo , Proteômica , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
3.
J Cell Sci ; 136(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37455654

RESUMO

Photosynthetic microalgae are responsible for an important fraction of CO2 fixation and O2 production on Earth. Three-dimensional (3D) ultrastructural characterization of these organisms in their natural environment can contribute to a deeper understanding of their cell biology. However, the low throughput of volume electron microscopy (vEM) methods along with the complexity and heterogeneity of environmental samples pose great technical challenges. In the present study, we used a workflow based on a specific electron microscopy sample preparation method compatible with both light and vEM imaging in order to target one cell among a complex natural community. This method revealed the 3D subcellular landscape of a photosynthetic dinoflagellate, which we identified as Ensiculifera tyrrhenica, with quantitative characterization of multiple organelles. We show that this cell contains a single convoluted chloroplast and show the arrangement of the flagellar apparatus with its associated photosensitive elements. Moreover, we observed partial chromatin unfolding, potentially associated with transcription activity in these organisms, in which chromosomes are permanently condensed. Together with providing insights in dinoflagellate biology, this proof-of-principle study illustrates an efficient tool for the targeted ultrastructural analysis of environmental microorganisms in heterogeneous mixes.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Imageamento Tridimensional/métodos
5.
Front Cell Dev Biol ; 10: 991664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060803

RESUMO

The identity and function of a given cell type relies on the differential expression of gene batteries that promote diverse phenotypes and functional specificities. Therefore, the identification of the molecular and morphological fingerprints of cell types across taxa is essential for untangling their evolution. Here we use a multidisciplinary approach to identify the molecular and morphological features of an exocrine, pancreas-like cell type harbored within the sea urchin larval gut. Using single cell transcriptomics, we identify various cell populations with a pancreatic-like molecular fingerprint that are enriched within the S. purpuratus larva digestive tract. Among these, in the region where they reside, the midgut/stomach domain, we find that populations of exocrine pancreas-like cells have a unique regulatory wiring distinct from the rest the of the cell types of the same region. Furthermore, Serial Block-face scanning Electron Microscopy (SBEM) of the exocrine cells shows that this reported molecular diversity is associated to distinct morphological features that reflect the physiological and functional properties of this cell type. Therefore, we propose that these sea urchin exocrine cells are homologous to the well-known mammalian pancreatic acinar cells and thus we trace the origin of this particular cell type to the time of deuterostome diversification. Overall, our approach allows a thorough characterization of a complex cell type and shows how both the transcriptomic and morphological information contribute to disentangling the evolution of cell types and organs such as the pancreatic cells and pancreas.

6.
J Cell Biol ; 221(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35389430

RESUMO

Membrane contact sites between organelles are organized by protein bridges. Among the components of these contacts, the VAP family comprises ER-anchored proteins, such as MOSPD2, that function as major ER-organelle tethers. MOSPD2 distinguishes itself from the other members of the VAP family by the presence of a CRAL-TRIO domain. In this study, we show that MOSPD2 forms ER-lipid droplet (LD) contacts, thanks to its CRAL-TRIO domain. MOSPD2 ensures the attachment of the ER to LDs through a direct protein-membrane interaction. The attachment mechanism involves an amphipathic helix that has an affinity for lipid packing defects present at the surface of LDs. Remarkably, the absence of MOSPD2 markedly disturbs the assembly of lipid droplets. These data show that MOSPD2, in addition to being a general ER receptor for inter-organelle contacts, possesses an additional tethering activity and is specifically implicated in the biology of LDs via its CRAL-TRIO domain.


Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Proteínas de Membrana , Receptores de Quimiocinas , Retículo Endoplasmático/metabolismo , Homeostase , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Membranas Mitocondriais , Receptores de Quimiocinas/metabolismo
7.
Science ; 374(6568): 717-723, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34735222

RESUMO

The evolutionary origin of metazoan cell types such as neurons and muscles is not known. Using whole-body single-cell RNA sequencing in a sponge, an animal without nervous system and musculature, we identified 18 distinct cell types. These include nitric oxide­sensitive contractile pinacocytes, amoeboid phagocytes, and secretory neuroid cells that reside in close contact with digestive choanocytes that express scaffolding and receptor proteins. Visualizing neuroid cells by correlative x-ray and electron microscopy revealed secretory vesicles and cellular projections enwrapping choanocyte microvilli and cilia. Our data show a communication system that is organized around sponge digestive chambers, using conserved modules that became incorporated into the pre- and postsynapse in the nervous systems of other animals.


Assuntos
Evolução Biológica , Poríferos/citologia , Animais , Comunicação Celular , Extensões da Superfície Celular/ultraestrutura , Cílios/fisiologia , Cílios/ultraestrutura , Sistema Digestório/citologia , Mesoderma/citologia , Sistema Nervoso/citologia , Fenômenos Fisiológicos do Sistema Nervoso , Óxido Nítrico/metabolismo , Poríferos/genética , Poríferos/metabolismo , RNA-Seq , Vesículas Secretórias/ultraestrutura , Transdução de Sinais , Análise de Célula Única , Transcriptoma
8.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34160561

RESUMO

Cells are 3D objects. Therefore, volume EM (vEM) is often crucial for correct interpretation of ultrastructural data. Today, scanning EM (SEM) methods such as focused ion beam (FIB)-SEM are frequently used for vEM analyses. While they allow automated data acquisition, precise targeting of volumes of interest within a large sample remains challenging. Here, we provide a workflow to target FIB-SEM acquisition of fluorescently labeled cells or subcellular structures with micrometer precision. The strategy relies on fluorescence preservation during sample preparation and targeted trimming guided by confocal maps of the fluorescence signal in the resin block. Laser branding is used to create landmarks on the block surface to position the FIB-SEM acquisition. Using this method, we acquired volumes of specific single cells within large tissues such as 3D cultures of mouse mammary gland organoids, tracheal terminal cells in Drosophila melanogaster larvae, and ovarian follicular cells in adult Drosophila, discovering ultrastructural details that could not be appreciated before.


Assuntos
Drosophila melanogaster/ultraestrutura , Células da Granulosa/ultraestrutura , Glândulas Mamárias Animais/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Coloração e Rotulagem/métodos , Células Tecais/ultraestrutura , Traqueia/ultraestrutura , Animais , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Feminino , Expressão Gênica , Genes Reporter , Células da Granulosa/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Larva/metabolismo , Larva/ultraestrutura , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos , Microscopia Eletrônica de Varredura/instrumentação , Organoides/metabolismo , Organoides/ultraestrutura , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Células Tecais/metabolismo , Traqueia/metabolismo , Fluxo de Trabalho , Proteína Vermelha Fluorescente
9.
Cell Host Microbe ; 28(6): 853-866.e5, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33245857

RESUMO

Pathogenesis induced by SARS-CoV-2 is thought to result from both an inflammation-dominated cytokine response and virus-induced cell perturbation causing cell death. Here, we employ an integrative imaging analysis to determine morphological organelle alterations induced in SARS-CoV-2-infected human lung epithelial cells. We report 3D electron microscopy reconstructions of whole cells and subcellular compartments, revealing extensive fragmentation of the Golgi apparatus, alteration of the mitochondrial network and recruitment of peroxisomes to viral replication organelles formed by clusters of double-membrane vesicles (DMVs). These are tethered to the endoplasmic reticulum, providing insights into DMV biogenesis and spatial coordination of SARS-CoV-2 replication. Live cell imaging combined with an infection sensor reveals profound remodeling of cytoskeleton elements. Pharmacological inhibition of their dynamics suppresses SARS-CoV-2 replication. We thus report insights into virus-induced cytopathic effects and provide alongside a comprehensive publicly available repository of 3D datasets of SARS-CoV-2-infected cells for download and smooth online visualization.


Assuntos
COVID-19/genética , Retículo Endoplasmático/ultraestrutura , SARS-CoV-2/ultraestrutura , Compartimentos de Replicação Viral/ultraestrutura , COVID-19/diagnóstico por imagem , COVID-19/patologia , COVID-19/virologia , Morte Celular/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/virologia , Humanos , Microscopia Eletrônica , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Compartimentos de Replicação Viral/metabolismo , Replicação Viral/genética
10.
J Cell Biol ; 219(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32349126

RESUMO

Lipid droplets (LDs) are fat storage organelles that originate from the endoplasmic reticulum (ER). Relatively little is known about how sites of LD formation are selected and which proteins/lipids are necessary for the process. Here, we show that LDs induced by the yeast triacylglycerol (TAG)-synthases Lro1 and Dga1 are formed at discrete ER subdomains defined by seipin (Fld1), and a regulator of diacylglycerol (DAG) production, Nem1. Fld1 and Nem1 colocalize to ER-LD contact sites. We find that Fld1 and Nem1 localize to ER subdomains independently of each other and of LDs, but both are required for the subdomains to recruit the TAG-synthases and additional LD biogenesis factors: Yft2, Pex30, Pet10, and Erg6. These subdomains become enriched in DAG. We conclude that Fld1 and Nem1 are both necessary to recruit proteins to ER subdomains where LD biogenesis occurs.


Assuntos
Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Diglicerídeos/biossíntese , Retículo Endoplasmático/genética , Regulação Fúngica da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Biogênese de Organelas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Triglicerídeos/biossíntese , Proteína Vermelha Fluorescente
11.
J Phys Chem B ; 116(30): 8822-9, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22686462

RESUMO

Redox active self-assembled monolayers inherently possess both electrochemically addressable and polarizable components. The latter will contribute, with additional parasitic terms, to the iR drop effects within any form of electronic analysis, potentially distorting results. A capacitive analysis of such interfaces (Electroactive Monolayer Capacitance Spectroscopy), presented here, enables a clean mapping of both the thermodynamic and kinetic faradaic characteristics in a single experimental run, with parasitic nonfaradaic contributions (polarization and resistance terms) both spectrally resolved and cleanly removed. The methodology enables a rapid and undistorted quantification of accessible redox site density of states (reported directly by redox capacitance), molecular surface coverage, electron transfer kinetics, and reorganization energies with comparatively little experimental effort. Exemplified here with electroactive copper protein and ferrocene films the approach is equally applicable to any redox active interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA